Semantic Particularity Measure for Functional Characterization of Gene Sets Using Gene Ontology

نویسندگان

  • Charles Bettembourg
  • Christian Diot
  • Olivier Dameron
چکیده

BACKGROUND Genetic and genomic data analyses are outputting large sets of genes. Functional comparison of these gene sets is a key part of the analysis, as it identifies their shared functions, and the functions that distinguish each set. The Gene Ontology (GO) initiative provides a unified reference for analyzing the genes molecular functions, biological processes and cellular components. Numerous semantic similarity measures have been developed to systematically quantify the weight of the GO terms shared by two genes. We studied how gene set comparisons can be improved by considering gene set particularity in addition to gene set similarity. RESULTS We propose a new approach to compute gene set particularities based on the information conveyed by GO terms. A GO term informativeness can be computed using either its information content based on the term frequency in a corpus, or a function of the term's distance to the root. We defined the semantic particularity of a set of GO terms Sg1 compared to another set of GO terms Sg2. We combined our particularity measure with a similarity measure to compare gene sets. We demonstrated that the combination of semantic similarity and semantic particularity measures was able to identify genes with particular functions from among similar genes. This differentiation was not recognized using only a semantic similarity measure. CONCLUSION Semantic particularity should be used in conjunction with semantic similarity to perform functional analysis of GO-annotated gene sets. The principle is generalizable to other ontologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Threshold Determination for Interpreting Semantic Similarity and Particularity: Application to the Comparison of Gene Sets and Metabolic Pathways Using GO and ChEBI

BACKGROUND The analysis of gene annotations referencing back to Gene Ontology plays an important role in the interpretation of high-throughput experiments results. This analysis typically involves semantic similarity and particularity measures that quantify the importance of the Gene Ontology annotations. However, there is currently no sound method supporting the interpretation of the similarit...

متن کامل

Ontology-based Gene Set Enrichment Analysis Using an Efficient Semantic Similarity Measure and Functional Clustering

Gene set enrichment analysis allows to extract specific biological functions relative to a group of genes. To this aim, we propose here a novel approach for mining biological data, using the Gene Ontology (GO) as main source of genes annotation terms. Firstly, we will use our new semantic similarity measure (IntelliGO) in a clustering process, for grouping genes sharing similar biological funct...

متن کامل

Diagnosis of the disease using an ant colony gene selection method based on information gain ratio using fuzzy rough sets

With the advancement of metagenome data mining science has become focused on microarrays. Microarrays are datasets with a large number of genes that are usually irrelevant to the output class; hence, the process of gene selection or feature selection is essential. So, it follows that you can remove redundant genes and increase the speed and accuracy of classification. After applying the gene se...

متن کامل

Molecular characterization of Mycoplasma synoviae isolated from broiler chickens of West Azarbaijan province by PCR of vlhA gene

Mycoplasma synoviae (MS) is a pathogen responsible for respiratory and locomotor disorders and causes major economic losses in poultry industry. Early and accurate diagnosis of MS infection plays a major role in control of the infection. This study was conducted to characterize Iranian field isolates of MS isolated from broiler chickens of West Azarbaijan province (Northwest of Iran), ...

متن کامل

Measuring gene functional similarity based on group-wise comparison of GO terms

MOTIVATION Compared with sequence and structure similarity, functional similarity is more informative for understanding the biological roles and functions of genes. Many important applications in computational molecular biology require functional similarity, such as gene clustering, protein function prediction, protein interaction evaluation and disease gene prioritization. Gene Ontology (GO) i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014